##plugins.themes.bootstrap3.article.main##

Luis Gerardo Reyes Flores https://orcid.org/0000-0002-5399-2766

Kevin Arnaldo Mejía Rivera https://orcid.org/0000-0002-8941-8168

Abstract

The use of Artificial Intelligence (AI) in research has shown a growing trend in recent years, gaining significant attention from the scientific community compared to other techniques and software for information analysis. Objective to conduct an analysis of the main trends in the use of AI in qualitative research to characterize how AI is being employed in such scientific production. Methods involved a bibliometric analysis of scientific articles indexed in Scopus, using the VosViewer tool, followed by a conventional analysis of data grouped by type, volume of articles, citations, and their respective dating. Results identified four clusters; the first one concentrates 161 occurrences and a score of 572 in its relationship strength. Meanwhile, the second cluster recorded 144 occurrences and a score of 1004 in its relationship strength. Clusters 3 and 4 present lower relationship strength scores. Cluster 1 stands out because it presents the highest number of occurrences linked to the use of AI as the methodology used in the analyzed research. Characterization shows that research oriented towards knowledge production (pure research) surpasses research with an innovation component, representing only one-third of the total. The citation volume of the former also exceeds that of the latter. Additionally, it was observed that the fields of Computer Science and Medicine are the most prominent in this topic. Conclusions AI applied to qualitative research constitutes an increasingly common tool. Three key factors stand out in the use of AI in qualitative research: as a strategy to automate decision-making, to enhance human action, and to investigate as an effect of external factors.

##plugins.themes.bootstrap3.article.details##

Section
Empirical Articles

How to Cite

Reyes Flores, L. G., & Mejía Rivera, K. A. (2024). ARTIFICIAL INTELLIGENCE IN QUALITATIVE RESEARCH: BIBLIOMETRIC ANALYSIS OF SCIENTIFIC PRODUCTION INDEXED IN SCOPUS . New Trends in Qualitative Research, 20(4), e1116. https://doi.org/10.36367/ntqr.20.4.2024.e1116
References

Abdüsselam, M. S. (2023). Qualitative Data Analysis in the Age of Artificial General Intelligence. International Journal of Advanced Natural Sciences and Engineering Researches, 7(4), 1–5. https://doi.org/10.59287/ijanser.454

Aguilar-Esteva, V.; Acosta-Banda, A.; Carreño Aguilera, R.; Patiño Ortiz, M. (2023). Desarrollo social sostenible mediante el uso de inteligencia artificial y ciencia de datos en la educación durante la emergencia COVID: una revisión sistemática utilizando PRISMA. Sostenibilidad , 15 , 6498. https://doi.org/10.3390/su15086498

Álvarez – Gayou, Juan (2003). Cómo hacer investigación cualitativa. Fundamentos y metodología. Paidós.

Ball, R. (2021). Handbook Bibliometrics. De Gruyter, Berlin.

Besiroglu, T., Emery-Xu, N. y Thompson, C. (2022). Impactos económicos de la I+D potenciada por la IA. https://doi.org/10.48550/arXiv.2212.08198

Boddy, CR (2019), "Investigación cualitativa para la innovación revolucionaria", Qualitative Market Research , vol. 22, núm. 5, págs. 796-804. https://doi.org/10.1108/QMR-06-2018-0063

Blondel, Maurice (1906). Le point départ de la recherche philosophique. Annales de Philosohie chrétienne.

Coeckelbergh (2019). Distributive justice and cooperation in a world of humans and non – humans: A contractarian Argument for Drawing non-humans in to Sphere of Justice. Res publica 15(1).

Coeckelbergh (2023). La filosofía política de la inteligencia artificial. Una introducción. Editorial Cátedra.

Costa, A (2023). Qualitative Research Methods: do digital tools open promising trends?. Revista Lusofona De Educacao, 67-76. https://doi.10.24140/issn.1645-7250.rle59.04

Cypress, B. (2019). Data Analysis Software in Qualitative Research: Preconceptions, Expectations, and Adoption. Dimensions of Critical Care Nursin 38(4):p 213-220, 8/7. https://doi.org/10.1097/DCC.0000000000000363

Domínguez-Gómez, A. (2022). The modernization of content analysis. Examples of application in socio-environmental evaluation. New Trends in Qualitative Research, 14, e577. https://doi.org/10.36367/ntqr.14.2022.e577

Elsevier (2024). Sitio web de Elsevier. Busqueda en Scopus. https://www.elsevier.com/es-es/products/scopus/search

Geraci, J; Shi, B; Lawlor, A; Smyth, B; Hurley, N y Dong R. (2020). Electronic apparatus and server for refining artificial intelligence model, and method of refining artificial intelligence model. Samsung Electronics Co; Ltd

Hemmer,P; Westphal, M; Schemmer, M; Vetter, S; Vössing, M & Satzger, G. (2023). Human-AI Collaboration: The Effect of AI Delegation on Human Task Performance and Task Satisfaction. In Proceedings of the 28th International Conference on Intelligent User Interfaces (IUI '23). Association for Computing Machinery, New York, NY, USA, 453–463. https://doi.org/10.1145/3581641.3584052

Kim JP, Ryan K, Kasun M, Hogg J, Dunn LB, Roberts LW (2023). Physicians’ and Machine Learning Researchers’ Perspectives on Ethical Issues in the Early Development of Clinical Machine Learning Tools: Qualitative Interview Study JMIR AI. https://doi.10.10.2196/47449

Kjell, O., Giorgi, S., & Schwartz, H. A. (2023). The text-package: An R-package for analyzing and visualizing human language using natural language processing and transformers. Psychological Methods, 28(6), 1478–1498. https://doi.org/10.1037/met0000542

Klinkhammer, Dennis. (2022). Sentiment Analysis with R: Natural Language Processing for Semi-Automated Assessments of Qualitative Data. https://doi.10.48550/arxiv.2206.12649

Kuckartz, U., Rädiker, S. (2019). Introduction: Analyzing Qualitative Data with Software. In: Analyzing Qualitative Data with MAXQDA. Springer, Cham. https://doi.org/10.1007/978-3-030-15671-8_1

Laitano, Reyes y Velásquez. (2023). Análisis bibliométrico: relación entre el chat GPT y la integridad académica. En Memoria V Congreso Nacional de Ciencia, Tecnología e Innovación 2023. Innovare: Revista De Ciencia y tecnología, 12(3), S1-S128.

Larivière V, Gingras Y, Archambault É. (2009). La disminución de la concentración de citas, 1900-2007. J Am Soc Inf Sci Technol [Internet]. 60 (4): 858–62. Disponible en: http://doi.wiley.com/10.1002/asi.21011

Lopezosa, C., & Codina, L. (2023, abril 28). Inteligencia Artificial y métodos cualitativos de investigación: ChatGPT para revisiones de la literatura y análisis de entrevistas semiestructuradas. Seminario sobre IA para investigadores "IA para principiantes" del Departamento de Comunicación de la UPF

Marshall, D. T., & Naff, D. B. (2023, May 18). The Ethics of Using Artificial Intelligence in Qualitative Research. https://doi.org/10.31235/osf.io/3rnbh

Mejía Rivera, K., & Rivera García, M. (2023). Using ChatGPT for Research Report Design: A Collaborative Learning Experience with Students and Professors in Honduras. In Interactive Mobile Communication, Technologies and Learning (pp. 224-231). Cham: Springer Nature Switzerland.

Morales-Chan, M. A. (2023). Explorando el potencial de Chat GPT: Una clasificación de Prompts efectivos para la enseñanza. http://biblioteca.galileo.edu/tesario/handle/123456789/1348

Nees, E; Van, J y Waltman, L. (2010). Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 84 (August): 523–38. https://doi.org/10.1007/s11192-009-0146-3.

Paulus, TM (2023). Uso de software de análisis de datos cualitativos para respaldar los flujos de trabajo de investigación digital. Revisión del desarrollo de recursos humanos, 22 (1), 139-148. https://doi.org/10.1177/15344843221138381

Perkins, M., & Roe, J. (2024). The use of generative AI in qualitative analysis: Inductive thematic analysis with ChatGPT. Journal of Applied Learning & Teaching, 7(1). https://doi.org/10.37074/jalt.2024.7.1.22

Pope, E. M., & Costa, A. P. (2023). The Case for Computational Competence and Transversal Skills: Using Digital Tools and Spaces for Qualitative Research. The Qualitative Report, 28(10), 2838-2847. https://doi.org/10.46743/2160-3715/2023.6676

Qiang, Ke. (2023). Research on Control Theory System Based on Computer Artificial Intelligence Technology. Journal of physics, 2493(1):012019-012019. doi: 10.1088/1742-6596/2493/1/012019

Reis, Costa & Souza. (2016). A survey on computer assisted qualitative data analysis software," 2016 11th Iberian Conference on Information Systems and Technologies (CISTI), Gran Canaria, Spain, https://doi:10.1109/CISTI.2016.7521502

Rivest, M., Vignola-Gagné, É., & Archambault, É. (2021). Article-level classification of scientific publications: A comparison of deep learning, direct citation and bibliographic coupling. PLoS ONE, 16.

Sánchez Gamboa, S., & Chaves-Gamboa, M. (2014). Los análisis cuantitativos y cualitativos de la producción del conocimiento en educación física: la experiencia del nordeste brasileño. Praxis & Saber, 5(10), 17–33. https://doi.org/10.19053/22160159.3018

Sancho Escrivá, J. V., Fanjul, C., de la Iglesia Vayá, M., Montell, J. A., & Escarti, M. J. (2020). Aplicación de la inteligencia artificial con procesamiento del lenguaje natural para textos de investigación cualitativa en la relación médico-paciente con enfermedad mental mediante el uso de tecnologías móviles.

SCImago, (2024). SJR - Revista SCImago y clasificación por países [Portal]. 18 de marzo de 2024, de http://www.scimagojr.com

Silva, ED (2021). Conocimiento Científico, Innovación y Desarrollo Económico y Social. En E. Silva y M. Valentim (Eds.), Papel de la ciencia de la información en una sociedad compleja (págs. 224-238). IGI Global. https://doi.org/10.4018/978-1-7998-6512-4.ch013

Stokel-Walker, C., & Van Noorden, R. (2023). What ChatGPT and generative AI mean for science. Nature, 614(7947), 214-216.

Taylor, S y Bogdan, R. (1992). Introducción a los Métodos Cualitativos de Investigación. Paidós.

Torrentira Jr., M. C. (2024). Capabilities and application of artificial intelligence (AI) models in qualitative and quantitative data mining, data processing and data analysis. Archives Des Sciences, 74(3), 198-200. https://doi.org/10.62227/as/74331

Van Eck, N. J., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well-known similarity measures. Journal of the American Society for Information Science and Technology, 60(8), 1635–1651. https://doi.org/10.1002/asi.21075

Van der Meijden, H., Kirschner, P. A., & Kester, L. (2021). Ethical implications of using artificial intelligence in education. Educational Technology Research and Development, 69, 231-244. https://doi.org/10.1007/s11423-020-09915-5

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA. https://doi.org/10.48550/arXiv.1706.03762

Vidrich, Arthur & Stanford, Lyman. (1998). Qualitative Methods, Their History inSociology and Antropology., en Norman Dezin e Yvonna Lincoln (Comps) The Landscape Qualitive Research. Theories and Issues.

Waltman, L., Van Eck, N. J & Noyons, E. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635.

Watson-Gegeo, K. A. (1988). Ethnography in ESL: Defining the Essentials. TESOL Quarterly, 22(4), 575–592. https://doi.org/10.2307/3587257

Xiao, Z., Yuan, X., Liao, Q. V., Abdelghani, R., & Oudeyer, P.-Y. (2023). Supporting qualitative analysis with large language models: Combining codebook with GPT-3 for deductive coding. In IUI '23 Companion: Proceedings of the 28th International Conference on Intelligent User Interfaces (March 27–31, 2023, Sydney). ACM. https://doi.org/10.1145/3581754.3584136

Xu, Y., Wang, Q., An, Z., Wang, F., Zhang, L., Wu, Y., Dong, F., Qiu, C., Liu, X., Qiu, J., Hua, K., Su, W., Xu, H., Han, Y., Cao, X., Liu, E., Fu, C., Yin, Z., Liu, M., Roepman, R., Dietmann, S., Virta, M., Kengara, F., Huang, C., Zhang, Z., Zhang, L., Zhao, T., Dai, J., Yang, J., Lan, L., Luo, M., Huang, T., Liu, Z., Qian, S., An, T., Liu, X., Zhang, B., He, X., Cong, S., Liu, X., Zhang, W., Wang, F., Lu, C., Cai, Z., Lewis, J.P., Tiedje, J., & Zhang, J. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2. https://doi.org/10.1016/j.xinn.2021.100179

Yu, L. y Yu, Z. (2023). Análisis cualitativos y cuantitativos de la ética de la inteligencia artificial en la educación utilizando VOSviewer y CitNetExplorer. Fronteras en Psicología, 14. https://doi.org/10.3389/fpsyg.2023.1061778