Science communication for citizens: speeches in use
DOI:
https://doi.org/10.36367/ntqr.15.2022.e745Keywords:
Science communication, Scientific literacy, Content analysis, Scientific institutions, InternetAbstract
Currently, a high and diverse fraction of scientific knowledge is published. However, the publication of scientific results in the academic field and among peers does not guarantee that knowledge reaches society. Scientists have a duty to transform knowledge into products that are easy to consume, accessible to people, at a time when they need to make conscious and informed decisions, contributing to empowerment in aspects of their health and their lives. To analyze the lexicon used by international entities in their online structures to communicate science to lay citizens. Exploratory study, of a descriptive nature, using document analysis of content published on the websites of 16 international scientific institutions. The textual corpus was organized into 21 texts and submitted to analysis using the software Interface de R pour Analyses Multidimensionnelles de Textes et de Questionneires (IRAMUTEQ). The corpus was organized into two contextual fields “Approaching the citizen” and “From public understanding of science to strategic communication”. Subsequently, the lexical worlds “Interaction”, “Involvement”, “Accessibility” and “Enabling” were categorized. The lexicon revealed in the speeches of the scientific institutions made it possible to identify the conceptual fields and the lexical worlds that characterize the three existing models of communication. In the scientific dissemination strategies revealed, there are elements of the transition and evolution of the models themselves over the years. The deficit model, strongly criticized in the literature, is represented by the less representative lexical world, demonstrating that it still has roots in current strategies, but constitutes a model that no longer responds sufficiently to the interests and needs of the current public. In contrast, the two subsequent models, although distant in CHD, AFC and similarity analyses, compete for similar goals, and more equitably address the democratic and interactive communication of science.
References
Apóstolo, J. L. A., & da Silva, R. C. G. (2021). Ciência cidadã e aberta em tempos de pandemia!. Revista de Enfermagem Referência, (1). https://doi.org/10.12707/RV21EDS8
Berbel, D. B. (2012). A comunicação da ciência nas campanhas de saúde online: Um estudo de caso do Portal da Saúde. 300.
Bik, H. M., & Goldstein, M. C. (2013). An Introduction to Social Media for Scientists. PLOS Biology, 11(4), e1001535. https://doi.org/10.1371/journal.pbio.1001535
Bucchi M., & Trench B. (2014). Science communication research: Themes and challenges. In: Bucchi M, Trench B (eds) Routledge Handbook of Public Communication of Science and Technology (Vol. 2). New York, NY: Routledge, pp. 1–14.
Camargo, B. V., & Justo, A. M. (2013). IRAMUTEQ: um software gratuito para análise de dados textuais. Temas em psicologia, 21(2), 513-518. http://dx.doi.org/10.9788/TP2013.2-16
Campos, R., Monteiro, J., & Carvalho, C. (2021). Engaged Citizen Social Science or the public participation in social science research. Journal of Science Communication, 20(06), A06. https://doi.org/10.22323/2.20060206
Cochrane. (2022). Be a Cochrane Citizen Scientist and contribute to health evidence. https://www.cochrane.org/news/be-cochrane-citizen-scientist-and-contribute-health-evidence
Davies, S. R., Halpern, M., Horst, M., Kirby, D., & Lewenstein, B. (2019). Science stories as culture: Experience, identity, narrative and emotion in public communication of science. Journal of Science Communication, 18(05), A01. https://doi.org/10.22323/2.18050201
Dudo, A., & Besley, J. C. (2016). Scientists’ Prioritization of Communication Objectives for Public Engagement. PLOS ONE, 11(2), e0148867. https://doi.org/10.1371/journal.pone.0148867
Durant, J. (1999). Participatory technology assessment and the democratic model of the public understanding of science. Science and Public Policy 26(5): 313–319. https://doi.org/10.3152/147154399781782329
EU-Citizen.Science. (2022). Available from: https://eu-citizen.science/
Fecher, B., & Friesike, S. (2013). Open science: one term, five schools of thought. In Opening science (pp. 17-47). Springer, Cham.
Green, J., & Thorogood, N. (2018). Qualitative methods for health research. Sage.
Haklay, M. (2018). Participatory citizen science. Em M. Haklay, S. Hecker, A. Bowser, Z. Makuch, J. Vogel, & A. Bonn (Eds.), Citizen Science (pp. 52–62). UCL Press. https://doi.org/10.14324/111.9781787352339
Hecker, S., Haklay, M., Bowser, A., Makuch, Z., Vogel, J., & Bonn, A. (2018). Innovation in open science, society and policy–setting the agenda for citizen science. Citizen Science: Innovation in open science, society and policy, 1-23.
Inácio, A., & Amante, M. J. (2021). Ciência aberta e novas (velhas) formas de fazer e comunicar ciência: ética, integridade e investigação responsável. Páginas a&b: arquivos e bibliotecas, 83-86.
Irwin, A. (2008). Risk, science and public communication: Third order thinking about scientific culture. In M. Bucchi & B. Trench (Eds.), Public communication of science and technology handbook (pp. 199–212). London: Routledge.
Irwin, A. (2021). Risk, science and public communication: Third-order thinking about scientific culture. Em Routledge Handbook of Public Communication of Science and Technology (3.a ed.). Routledge.
Jensen, E., & Holliman, R. (2016). Norms and Values in UK Science Engagement Practice. International Journal of Science Education, Part B, 6(1), 68–88. https://doi.org/10.1080/21548455.2014.995743
Joly, P.-B., & Kaufmann, A. (2008). Lost in Translation? The Need for ‘Upstream Engagement’ with Nanotechnology on Trial. Science as Culture, 17(3), 225–247. https://doi.org/10.1080/09505430802280727
Kalampalikis, N. (2005). L'apport de la méthode Alceste dans l'analyse des représentations sociales. Dans : Jean-Claude Abric éd., Méthodes d'étude des représentations sociales (pp. 147-163). Toulouse: Érès. https://doi.org/10.3917/eres.abric.2003.01.0147
Kessler, S. H., Schäfer, M. S., Johann, D., & Rauhut, H. (2022). Mapping mental models of science communication: How academics in Germany, Austria and Switzerland understand and practice science communication. Public Understanding of Science, 31(6), 711–731. https://doi.org/10.1177/09636625211065743
Kullenberg, C., & Kasperowski, D. (2016). What Is Citizen Science? – A Scientometric Meta-Analysis. PLOS ONE, 11(1), e0147152. https://doi.org/10.1371/journal.pone.0147152
Kythreotis, A. P., Mantyka-Pringle, C., Mercer, T. G., Whitmarsh, L. E., Corner, A., Paavola, J., Chambers, C., Miller, B. A., & Castree, N. (2019). Citizen Social Science for More Integrative and Effective Climate Action: A Science-Policy Perspective. Frontiers in Environmental Science, 7. https://doi.org/10.3389/fenvs.2019.00010
Lorés, R. (2020). Science on the web: The exploration of European research websites of energy-related projects as digital genres for the promotion of values. Discourse, Context & Media, 35, 100389. https://doi.org/10.1016/j.dcm.2020.100389
Mahr, D., Göbel, C., Irwin, A. & Vohland, K. (2018). Watching or being watched - Enhancing productive discussion between the citizen sciences, the social sciences and the humanities. In: Hecker, S. and Haklay, M. and Bowser, A. and Makuch, Z. and Vogel, J. and Bonn, A., (eds.) Citizen Science - Innovation in Open Science, Society and Policy. (pp. 99-109). UCL Press: London. https://doi.org/10.14324/111.9781787352339
Massoli, L. (2007). Science on the net: An analysis of the websites of the European public research institutions. Journal of Science Communication, 6(3), A03. https://doi.org/10.22323/2.06030203
Metcalfe, J. (2019). Comparing science communication theory with practice: An assessment and critique using Australian data. Public Understanding of Science, 28(4), 382–400. https://doi.org/10.1177/0963662518821022
Mheidly, N., & Fares, J. (2020). Leveraging media and health communication strategies to overcome the COVID-19 infodemic. Journal of Public Health Policy, 41(4), 410–420. https://doi.org/10.1057/s41271-020-00247-w
Nascimento, A. R. A., & Menandro, P. R. M. (2006). Análise lexical e análise de conteúdo: uma proposta de utilização conjugada. Estudos e pesquisas em psicologia, 6(2), 72-88.
Ratinaud P. (2014). IRAMUTEQ: Interface de R pour les Analyses Multidimensionnelles de Textes et de Questionnaires-0.7 alpha 2. http://www.iramuteq.org
Reinert, M. (2001). Alceste, une méthode statistique et sémiotique d'analyse de discours. Application aux Rêveries du promeneur solitaire. Revue française de psychiatrie et de psychologie médicale, 5(49), 32-36.
Rodríguez, M., & Giri, L. (2021). Desafíos teóricos cruciales para la comunicación pública de la ciencia y la tecnología pospandemia en Iberoamérica. Revista Iberoamericana de Ciencia, Tecnología y Sociedad-CTS, 16(46), 25-39.
Saboga-Nunes, L., da Silva Freitas, O., & Cunha, M. (2016). Renasceres®: um modelo para a construção da cidadania em saúde através da literacia para a saúde. Servir, 59(1), 7-15.
Salviati M. E. (2017). Manual do aplicativo Iramuteq. Planaltina. http://www.iramuteq.org/documentation/fichiers/manual-do-aplicativo-iramuteq-par-mariaelisabeth-salviati
Santos, P. S. N. dos, Granado, A. M. S. C., & Girão, H. (2018). A Importância da Comunicação em Saúde. Revista Internacional Em Língua Portuguesa, (33), 15–25. https://doi.org/10.31492/2184-2043.RILP2018.33/pp.15-25
Seethaler, S., Evans, J. H., Gere, C., & Rajagopalan, R. M. (2019). Science, Values, and Science Communication: Competencies for Pushing Beyond the Deficit Model. Science Communication, 41(3), 378–388. https://doi.org/10.1177/1075547019847484
Simis, M. J., Madden, H., Cacciatore, M. A., & Yeo, S. K. (2016). The lure of rationality: Why does the deficit model persist in science communication? Public Understanding of Science, 25(4), 400–414. https://doi.org/10.1177/0963662516629749
Sousa, Y. S. O., Gondim, S. M. G., Carias, I. A., Batista, J. S., & de Machado, K. C. M. (2020). O uso do software Iramuteq na análise de dados de entrevistas. Revista Pesquisas e Práticas Psicossociais, 15(2), 1-19.
South, A., Hanley, B., Gafos, M., Cromarty, B., Stephens, R., Sturgeon, K., Scott, K., Cragg, W. J., Tweed, C. D., Teera, J., & Vale, C. L. (2016). Models and impact of patient and public involvement in studies carried out by the Medical Research Council Clinical Trials Unit at University College London: findings from ten case studies. Trials, 17, 376. https://doi.org/10.1186/s13063-016-1488-9
Souza, M., Wall, M. L., Thuler, A., Lowen, I., & Peres, A. M. (2018). The use of IRAMUTEQ software for data analysis in qualitative research. Revista da Escola de Enfermagem da USP, 52, e03353. https://doi.org/10.1590/S1980-220X2017015003353
Ward, F., Popay, J., Porroche-Escudero, A., Akeju, D., Ahmed, S., Cloke, J., Khan, K., Hassan, S., & Khedmati-Morasae, E. (2020). Mainstreaming public involvement in a complex research collaboration: A theory-informed evaluation. Health Expectations, 23(4), 910–918. https://doi.org/10.1111/hex.13070
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 New Trends in Qualitative Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
openAccess