##plugins.themes.bootstrap3.article.main##

Celina Leão https://orcid.org/0000-0003-3725-5771

Vinicius Silva https://orcid.org/0000-0003-0082-343X

Susana Pinto da Costa https://orcid.org/0000-0001-7440-8787

Abstract

Framework This paper explores how a qualitative systematic literature review (SLR) can contribute to our understanding of the trends in upper-limb wearable devices. These devices are pieces of electronic equipment that can be worn as accessories, such as watches, or embedded in clothing, including gloves and sleeves, and could play an essential role in subjects' quality of life after any occurrence that affects their possibility to perform basic activities autonomously. Moreover, these devices can be used to improve manual performance tasks like surgical or precision tasks, and even more so when performed under extreme ambient temperature conditions. Goals and Methods: A SLR on upper-limb embedded devices was conducted based on scientific documents retrieved from the Scopus database. Two research questions were outlined: "How has this technology been evolving?" and "What is the trend according to the fields of application?". The combination of keywords (upper-limb* AND wearable* AND device*) was used in the title, abstract, and keywords fields. Results: A total of 555 documents were obtained. Descriptive statistical and bibliometric analyses were conducted, identifying trends, knowledge gaps, and the future direction of research. The free software VOSviewer was used to construct data visualization bibliometric maps of the co-authorship and co-citation network. A subset of 26 documents was considered for the critical qualitative synthesis. This step facilitated the visualization and exploration of the interconnectedness among authors and the citation patterns within the literature. Combining the information gathered enables addressing the extent and the emerging trends in upper-limb embedded devices' development according to the field they are applied. Final considerations: With this research, a starting point in developing a proof of concept of a novel device aimed at improving dexterity in challenging environments is established.

##plugins.themes.bootstrap3.article.details##

Section
Empirical Articles

How to Cite

Leão, C., Vinicius Silva, & Susana Pinto da Costa. (2023). Emerging trends in upper-limb embedded devices: A qualitative research study . New Trends in Qualitative Research, 16, e796. https://doi.org/10.36367/ntqr.16.2023.e796
References

Bardi, E., Gandolla, M., Braghin, F., Resta, F., Pedrocchi, A. L. G., & Ambrosini, E. (2022). Upper limb soft robotic wearable devices: A systematic review. Journal of NeuroEngineering and Rehabilitation, 19(1), Article 87. https://doi.org/10.1186/s12984-022-01065-9

Biddiss, E., & Chau, T. (2007). Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthetics and Orthotics Internationa, 31(3), 236–257. https://doi.org/10.1080/03093640600994581

Burchielli, D., Lotti, N., Missiroli, F., Bokranz, C., Pedrocchi, A., Ambrosini, E., & Masia, L. (2022). Adaptive hybrid FES-force controller for arm exosuit. Proceedings of the IEEE International Conference on Rehabilitation Robotics, 1-6. https://doi.org/10.1109/ICORR55369.2022.9896493

Burton, S. D. (2020). Responsible use of exoskeletons and exosuits: Ensuring domestic security in a European context. Paladyn, 11(1), 370–378. https://doi.org/10.1515/pjbr-2020-0015

Chiaradia, D., Xiloyannis, M., Solazzi, M., Masia, L., & Frisoli, A. (2019). Rigid versus soft exoskeletons: Interaction strategies for upper limb assistive technology. In J. Rosen & P. W. Ferguson (eds.), Wearable robotics: Systems and applications, (pp. 67–90). Elsevier. https://doi.org/10.1016/B978-0-12-814659-0.00004-7

Cordella, F., Ciancio, A. L., Sacchetti, R., Davalli, A., Cutti, A. G., Guglielmelli, E., & Zollo, L. (2016). Literature review on needs of upper limb prosthesis users. Frontiers in Neuroscience, 10, Article 209. Media S.A. https://doi.org/10.3389/fnins.2016.00209

Elstub, L. J., Fine, S. J., & Zelik, K. E. (2021). Exoskeletons and exosuits could benefit from mode-switching body interfaces that loosen/tighten to improve thermal comfort. International Journal of Environmental Research and Public Health, 18(24), 13115. https://doi.org/10.3390/ijerph182413115

Fu, J., Choudhury, R., Hosseini, S. M., Simpson, R., & Park, J. H. (2022). Myoelectric control systems for upper limb wearabler robotic exoskeletons and exosuits — A systematic review. Sensors, 22(21), 8134. https://doi.org/10.3390/s22218134

Galofaro, E., D’Antonio, E., Lotti, N., & Masia, L. (2022). A hybrid assistive paradigm based on neuromuscular electrical stimulation and force control for upper limb exosuits. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 1-6. https://doi.org/10.1109/BioRob52689.2022.9925466

Gaponov, I., Popov, D., Lee, S. J., & Ryu, J. H. (2017). Auxilio: A portable cable-driven exosuit for upper extremity assistance. International Journal of Control, Automation and Systems, 15(1), 73–84. https://doi.org/10.1007/s12555-016-0487-7

Georgarakis, A. M., Wolf, P., & Riener, R. (2019). Simplifying exosuits: Kinematic couplings in the upper extremity during daily living tasks. Poceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics, 423-428. https://doi.org/10.1109/ICORR.2019.8779401

Kieran Little, C. W. A., Xiloyanis, M., de Noronha, B. A.P.S., Kim, Y. G., Masa, L., & Accoto, D. (2019). IMU-based assistance modulation in upper limb soft wearable exosuits. Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), 1197–1202. https://doi.org/ 10.1109/ICORR.2019.8779362

Kiml, Y. G., Xiloyannis, M., Accoto, D., & Masia, L. (2018). Development of a soft exosuit for industriale applications. Proceedings of the 2018 7th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 324–329. https://doi.org/10.1109/BIOROB.2018.8487907

Langard, M., Aoustin, Y., Arakelian, V., & Chablat, D. (2020). Investigation of the stresses exerted by an exosuit of a human arm. Mechanisms and Machine Science, 80, 425–435. https://doi.org/10.1007/978-3-030-33491-8_50

Lessard, S., Pansodtee, P., Robbins, A., Baltaxe-Admony, L. B., Trombadore, J. M., Teodorescu, M., Agogino, A., & Kurniawan, S. (2017). CRUX: A compliant robotic upper-extremity exosuit for lightweight, portable, multi-joint muscular augmentation. Proceedings of the 2017 IEEE International Conference on Rehabilitation Robotics, 1633–1638. https://doi.org/10.1109/ICORR.2017.8009482

Lessard, S., Pansodtee, P., Robbins, A., Trombadore, J. M., Kurniawan, S., & Teodorescu, M. (2018). A soft exosuit for flexible upper-extremity rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(8), 1604–1617. https://doi.org/10.1109/TNSRE.2018.2854219

Lo, H. S., & Xie, S. Q. (2012). Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects. Medical Engineering and Physics, 34(3), 261–268. https://doi.org/10.1016/j.medengphy.2011.10.004

Lotti, N., Xiloyannis, M., Missiroli, F., Chiaradia, D., Frisoli, A., Sanguineti, V., & Masia, L. (2020, November). Intention-detection strategies for upper limb exosuits: Model-based myoelectric vs dynamic-based control. In 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob) (pp. 410-415). IEEE. https://doi.org/10.1109/BioRob49111.2020.9224284

Lotti, N., Missiroli, F., Xiloyannis, M., & Masia, L. (2022). A model-based control strategy for upper limb exosuits. In J. C. Moreno, J. Masood, U. Schneider, C. Maufroy, & J. L. Pons (Eds.), Wearable Robotics: Challenges and Trends (pp. 339–343). Springer International Publishing. https://doi.org/10.1007/978-3-030-69547-7_55

Missiroli, F., Lotti, N., Tricomi, E., Bokranz, C., Alicea, R., Xiloyannis, M., Krzywinski, J., Crea, S., Vitiello, N., & Masia, L. (2022). Rigid, soft, passive, and active: A hybrid occupational exoskeleton for bimanual multijoint assistance. IEEE Robotics and Automation Letters, 7(2), 2557–2564. https://doi.org/10.1109/LRA.2022.3142447

Natividad, R. F., Miller-Jackson, T., & Chen-Hua, R. Y. (2021). A 2-DOF shoulder exosuit driven by modular, pneumatic, fabric actuators. IEEE Transactions on Medical Robotics and Bionics, 3(1), 166–178. https://doi.org/10.1109/TMRB.2020.3044115

Pastor, S. S., Rivera, C. T., Avilés, O. F., & Mauledoux, M. F. (2019). A real-time motion tracking wireless system for upper limb exosuit based on inertial measurement units and flex sensors. International Journal of Engineering, Transactions B: Applications, 32(6), 820–827. https://doi.org/10.5829/ije.2019.32.06c.04

Pérez Vidal, A. F., Rumbo Morales, J. Y., Ortiz Torres, G., Sorcia Vázquez, F. de J., Cruz Rojas, A., Brizuela Mendoza, J. A., & Rodríguez Cerda, J. C. (2021). Soft exoskeletons: Development, requirements, and challenges of the last decade. Actuators, 10(7), Article 166. https://doi.org/10.3390/act10070166

Pont-Esteban, D., Contreras-González, A. F., Samper-Escudero, J. L., Sáez-Sáez, F. J., Ferre, M., & Sánchez-Urán, M. (2021). Validation of an elbow position super-twisting sliding-mode controller for upper-limb exosuit using a soft position sensor. Journal of Physics: Conference Series, 1828(1), 012074. https://doi.org/10.1088/1742-6596/1828/1/012074

Pont-Esteban, D., Sanchez-Uran, M. A., & Ferre, M. (2022). Robust motion control architecture for an upper-limb rehabilitation exosuit. IEEE Access, 10, 113631–113648. https://doi.org/10.1109/ACCESS.2022.3217528

Rosen, J., & Perry, J. C. (2007). Upper limb powered exoskeleton. International Journal of Humanoid Robotics, 4(3), 529-548. https://doi.org/10.1142/S021984360700114X

Sambhav, R., Jena, S., Chatterjee, A., Bhasin, S., Santapuri, S., Kumar, L., Muthukrishnan, S. P., & Roy, S. (2022). An integrated dynamic closed loop simulation platform for elbow flexion augmentation using an upper limb exosuit model. Frontiers in Robotics and AI, 9, 768841. https://doi.org/10.3389/frobt.2022.768841

Samper-Escudero, J. L., Contreras-González, A. F., Ferre, M., Sánchez-Urán, M. A., & Pont-Esteban, D. (2020a). Efficient multiaxial shoulder-motion tracking based on flexible resistive sensors applied to exosuits. Soft Robotics, 7(3), 370–385. https://doi.org/10.1089/soro.2019.0040

Samper-Escudero, J. L., Gimenez-Fernandez, A., Sanchez-Uran, M. A., & Ferre, M. (2020b). A cable-driven exosuit for upper limb flexion based on fibres compliance. IEEE Access, 8, 153297–153310. https://doi.org/10.1109/ACCESS.2020.3018418

Samper-Escudero, J. L., Coloma, S., Olivares-Mendez, M. A., Sanchez-Uran, M. A., & Ferre, M. (2021). Assessment of a textile portable exoskeleton for the upper limbs’ flexion. Proceedings of the 2021 IEEE 2nd International Conference on Human-Machine Systems, 1-6. https://doi.org/10.1109/ICHMS53169.2021.9582447

Samper-Escudero, J. L., Coloma, S., Olivares-Mendez, M.A., González, S. U., & Ferre, M. A. (2022). A compact and portable exoskeleton for shoulder and elbow assistance for workers and prospective use in space. IEEE Transactions on Human-Machine Systems, 99, 1-10. https://doi.org/10.1109/THMS.2022.3186874

Sarfraz, Z., Sarfraz, A., Iftikar, H. M., & Akhund, R. (2021). Is Covid-19 pushing us to the fifth industrial revolution (Society 5.0)? Pakistan Journal of Medical Sciences, 37(2), 1–4. https://doi.org/10.12669/pjms.37.2.3387

Silva, K. A. G., Costa, A. P., & Teixeira, N. P. (2022). Qualitative analysis of digital content curation models: Possibilities for use in CAQDAS. New Trends in Qualitative Research, 12, e630. https://publi.ludomedia.org/index.php/ntqr/article/view/630

Sy, L., Hoang, T. T., Bussu, M., Thai, M. T., Phan, P. T., Low, H., Tsai, D., Brodie, M. A., Lovell, N. H., & Do, T. N. (2021). M-SAM: Miniature and soft artificial muscle-driven wearable robotic fabric exosuit for upper limb augmentation. Proceedings of the 2021 IEEE 4th International Conference on Soft Robotics, 575-578. https://doi.org/10.1109/RoboSoft51838.2021.9479333

Thomé, A. M. T., Scavarda, L. F., & Scavarda, A. J. (2016). Conducting systematic literature review in operations management. Production Planning & Control, 27(5), 408-420. https://doi.org/10.1080/09537287.2015.1129464

van Eck, N. J., & Waltman, L. (2023). VOSviewer Manual. VOSviewer.

Walmsley, C. P., Williams, S. A., Grisbrook, T., Elliott, C., Imms, C., & Campbell, A. (2018). Measurement of upper limb range of motion using wearable sensors: A systematic review. Sports Medicine – Open, 4(1), Article 53 https://doi.org/10.1186/s40798-018-0167-7

Wang, Q., Markopoulos, P., Yu, B., Chen, W., & Timmermans, A. (2017). Interactive wearable systems for upper body rehabilitation: A systematic review. Journal of NeuroEngineering and Rehabilitation, 14(1), Article 20. https://doi.org/10.1186/s12984-017-0229-y

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS Quarterly, 26(2), 13–23. https://www.jstor.org/stable/4132319

Weston, E. B., Alizadeh, M., Hani, H., Knapik, G. G., Souchereau, R. A., & Marras, W. S. (2022). A physiological and biomechanical investigation of three passive upper-extremity exoskeletons during simulated overhead work. Ergonomics, 65(1), 105–117. https://doi.org/10.1080/00140139.2021.1963490

Xiloyannis, M., Dhinh, K. B., Cappello, L., Antuvan, C. W., & Masia, L. (2018). A soft wearable elbow exosuit. In R. K.-Y. Tong. (ed.), Wearable technology in medicine and health care (pp. 193–214). Elsevier. https://doi.org/10.1016/B978-0-12-811810-8.00010-5